Geschichte Goldener Schnitt

Antike

Die erste erhalten gebliebene genaue Beschreibung des Goldenen Schnittes stammt von Euklid (um 300 v. Chr.), der darauf über seine Untersuchungen an den platonischen Körpern und dem Fünfeck beziehungsweise dem Pentagramm stieß. Seine Bezeichnung für dieses Teilungsverhältnis wurde später als „proportio habens medium et duo extrema“ übersetzt, was heute als „Teilung im inneren und äußeren Verhältnis“ bezeichnet wird.

Mittelalter

In seinem Rechenbuch Liber abbaci (nicht erhaltene Erstfassung 1202, erhaltene 2. Fassung nicht vor 1220), einem umfangreichen arithmetischen und algebraischen Lehrwerk über das Rechnen mit den indo-arabischen Ziffern, kommt der italienische Mathematiker Leonardo da Pisa, genannt „Fibonacci“, kurz auch auf die später nach ihm benanten Fibonacci-Folge zu sprechen, und zwar im Zusammenhang mit der sogenannten Kaninchen-Aufgabe, in der zu errechnen ist, wie viele Kaninchenpaare bei einer Fortpflanzungsrate von einem Paar Jungkaninchen pro Elternpaar und Monat nach Ablauf eines Jahres insgesamt vorhanden sind, wenn ein erstes Paar bereits im ersten Monat und dessen Nachwuchs jeweils ab seinem zweiten Lebensmonat Junge wirft. Leonardo führt die Zahlen für jeden Monat vor (2, 3, 5, 8 ... bis 377) und weist darauf hin, dass sich jedes Glied der Reihe (ab dem dritten) durch Summierung der beiden vorhergehenden Reihenglieder errechnen lässt. Eine weitere Beschäftigung mit dieser Folge findet sich bei ihm nicht. Dass ihm auch der Goldene Schnitt bekannt und in der Tradition Euklids ein Begriff war, zeigt sich gegen Ende seines Werks bei einer algebraischen Aufgabe, in der es darum geht (in moderner Formulierung wiedergegeben) a und b zu finden mit 10 a plus b und ab plus ba v5 . Hierzu weist Leonardo darauf hin, dass im Fall von a b die Proportion 10 durch a a durch b gilt, 10 also von a und b im Verhältnis des Goldenen Schnitts geteilt wird ("et scis, secundum hanc diuisionem, 10 diuisa esse media et extrema porportione; quia est sicut 10 ad maiorem partem, ita maior pars ad minorem").

Renaissance

Einen Zusammenhang zwischen Fibonacci-Folge und Goldenem Schnitt stellte Leonardo jedoch noch nicht her: Die Entdeckung, dass sich bei Teilung eines Gliedes der Fibonacci-Folge durch das vorhergehende Reihenglied als Näherungswert Φ ergibt, wurde lange Zeit Johannes Kepler zugeschrieben, konnte jedoch in jüngerer Zeit auch schon in einer handschriftlichen Anmerkung nachgewiesen werden, mit der ein mutmaßlich aus Italien stammender Leser in der ersten Hälfte des 16. Jahrhunderts Euklids Theorem II.11 in der Euklid-Ausgabe Paciolis von 1509 kommentierte:


"Eine Gerade ab von 233 Fuß sei so, so wie es Theorem 11 hier vorführt, an einem Punkt h in zwei ungleiche Teile geteilt, und dabei sei bh sein größerer Teil mit 144 und ha sein kleinerer Teil mit 89. ab sei multipliziert mit, und es ergeben sich 20737, und bh multipliziert mit sich selbst, so ergeben sich 20736. Und daran magst du erkennen, dass man sich nicht mit Ersetzungen abzumühen braucht um zu zeigen, dass es unmöglich ist, die Zahl so zu teilen wie es hier Theorem 11 vorführt. Das gleiche ergibt sich, wenn eine Gerade von 13 Fuß in eine Gerade von 8 und eine von 5 Fuß geteilt wird."

Auch der Herausgeber dieser Euklid-Ausgabe, der Franziskanermönch Luca Pacioli di Borgo San Sepolcro (1445–1514), der an der Universität von Perugia Mathematik lehrte, hatte sich intensiv mit dem Goldenen Schnitt befasst. Er nannte diese Streckenteilung Göttliche Teilunghe T, was sich auf Platons Identifizierung der Schöpfung mit den fünf platonischen Körpern bezog, zu deren Konstruktion der Goldene Schnitt ein wichtiges Hilfsmittel darstellt. Sein gleichnamiges Werk „De Divina Proportione“ von 1509 besteht aus drei unabhängigen Büchern. Bei dem ersten handelt es sich um eine rein mathematische Abhandlung, die jedoch keinerlei Bezug zur Kunst und Architektur herstellt. Das zweite ist ein kurzer Traktat über die Schriften des Römers Vitruv aus dem 1. Jahrhundert v. Chr. zur Architektur, in denen Vitruv die Proportionen des menschlichen Körpers als Vorlage für Architektur darstellt. Dieses Buch enthält eine Studie von Leonardo da Vinci (1452–1519) über den vitruvianischen Menschen. Das Verhältnis von Quadratseite zu Kreisradius in diesem berühmten Bild entspricht mit einer Abweichung von 1,7 % dem Goldenen Schnitt, der jedoch im zugehörigen Buch gar nicht erwähnt wird. Darüber hinaus würde man diese Abweichung bei einem konstruktiven Verfahren nicht erwarten.

Im Oktober 1597 stellte Johannes Kepler in einem Brief an seinen früheren Tübinger Professor Michael Maestlin die Frage, warum es nur eine einzige mögliche Lösung gebe für die Aufgabe, ein rechtwinkliges Dreieck zu konstruieren, bei dem das Verhältnis der kürzeren zur längeren Seite dem der längeren zur Hypotenuse entspricht. Auf das Original dieses Briefes notierte Maestlin eine Berechnung, die die Hypotenuse einmal mit 10 und einmal mit 10.000.000, und für den letzteren Fall dann die kürzeste Seite mit 7.861.514 und die längere Seite mit 6.180.340 beziffert. Das entspricht einer bis auf die sechste Nachkommastelle genauen (und bis zur fünften korrekten) Angabe des Goldenen Schnitts und ist nach älteren sexagesimalen Berechnungen der Antike die erste bekannte dezimale Angabe dieser Art.

19. und 20. Jahrhundert

In Abhandlungen verschiedener Autoren im 19. Jahrhundert, insbesondere von dem Philosophen Adolf Zeising, wurden diese beiden Schriften zu der These kombiniert, Pacioli hätte in der „De Divina Proportione” in Zusammenarbeit mit Leonardo da Vinci einen Zusammenhang zwischen Kunst und Goldenem Schnitt hergestellt und damit seine Wiederentdeckung für die Malerei der Renaissance begründet. Zeising war von der Existenz eines Naturgesetzes der Ästhetik überzeugt, dessen Basis der Goldene Schnitt sein müsse. Er suchte und fand den Goldenen Schnitt überall. Seine Schriften verbreiteten sich rasch und begründeten eine wahre Euphorie bezüglich des Goldenen Schnitts. Andererseits zeigt eine Untersuchung der Literatur, dass vor Zeising niemand in den Werken der Antike oder Renaissance den Goldenen Schnitt zu erkennen glaubte. Entsprechende Funde sind daher heute unter Kunsthistorikern eher umstritten.

Die Bezeichnung zeichnung Goldener S wurde erstmals 1835 von Martin Ohm (1792–1872; Bruder von Georg Simon Ohm) in einem Lehrbuch der Mathematik verwendet. Auch die Bezeichnung sectio aureactio entstand erst in dieser Zeit.

Gustav Theodor Fechner, ein Begründer der experimentellen Psychologie, stellte 1876 bei Untersuchungen mit Versuchspersonen anhand von Rechtecken in der Tat eine Präferenz für den Goldenen Schnitt fest. Die Ergebnisse bei der Streckenteilung und bei Ellipsen fielen jedoch anders aus. Neuzeitliche Untersuchungen zeigen, dass das Ergebnis solcher Experimente stark vom Kontext der Darbietung abhängt. Fechner fand ferner bei Vermessungen von Bildern in verschiedenen Museen Europas, dass die Seitenverhältnisse im Hochformat im Mittel etwa 4:5 und im Querformat etwa 4:3 betragen und sich damit deutlich vom Goldenen Schnitt unterscheiden.

Der rumänische Diplomat Matila Ghyka verband in seinen Schriften Esthétique des Proportionsroportions (1927) und Le nombre d'or (1931) den religiösen Aspekt von Pacioli mit dem ästhetischen von Zeising. Er interpretierte den Goldenen Schnitt als fundamentales Geheimnis des Universums und führte dazu vor allem Beispiele in der Natur an.

Ende des 20. Jahrhunderts suchte die Kunsthistorikerin Marguerite Neveux mit röntgenanalytischen Verfahren unter der Farbe von Originalgemälden, die angeblich den Goldenen Schnitt enthalten, vergeblich nach entsprechenden Markierungen oder Konstruktionsspuren.

Copyright © 2009-2018 ALPHA - WISSEN | Alle Rechte vorbehalten